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Robust chaos in a model of the electroencephalogram: Implications
for brain dynamics

Mathew P. Dafilis, David T. J. Liley, and Peter J. Cadusch
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Various techniques designed to extract nonlinear characteristics from experimental time series have
provided no clear evidence as to whether the electroencephalogram~EEG! is chaotic. Compounding
the lack of firm experimental evidence is the paucity of physiologically plausible theories of EEG
that are capable of supporting nonlinear and chaotic dynamics. Here we provide evidence for the
existence of chaotic dynamics in a neurophysiologically plausible continuum theory of
electrocortical activity and show that the set of parameter values supporting chaos within parameter
space has positive measure and exhibits fat fractal scaling. ©2001 American Institute of Physics.
@DOI: 10.1063/1.1394193#
-

-

r
-

th
o
s
th
in
a

or

th
ta
th
e

am
h
ha
e
in

m

ory
y

nd
m-
read

am
-

the

n of
ap-
ics

tivity

o
neo-
en
rtex
e
l
e-

gi-
cal
ex-

ma
u-
lly
ci-
ry
ci-
c-
Since the introduction of techniques to extract nonlinear
characteristics from experimental time series an open
question in brain dynamics has been whether the brain
does indeed show signs of nonlinear or even chaotic ac
tivity. The electroencephalogram „EEG… is a signal re-
corded by scalp electrodes reflecting the synchronous ac
tivity of many millions of neurones. Experimental
analyses of the EEG to date have failed to show clea
evidence of chaotic activity. Here we consider the ques
tion from a theoretical viewpoint, presenting evidence
confirming the existence of chaotic dynamics in a biologi-
cally realistic model of brain electrical activity, also sug-
gesting, however, that a direct observation of chaotic ac-
tivity in the electroencephalogram is unlikely. We discuss
the implications of this work for Freeman’s theory of per-
ceptual neurodynamics.

INTRODUCTION

One of the few coherent attempts to clearly relate
EEG to macroscopic cortical dynamics is Freeman’s work
olfactory perception and palaeocortical EEG which sugge
that the existence of chaos in cortical neurodynamics is
very property that makes perception possible, giving bra
their ability to respond flexibly and coherently to perceptu
stimuli.1,2 The neocortical electroencephalogram is far m
complicated than its palaeocortical counterpart.3 Notwith-
standing this a considerable amount of experimental and
oretical work has been performed in an attempt to unders
neocortical neural dynamics and to determine whether
human neocortical EEG shows signs of chaos. Other w
regarded macroscopic theories of EEG4–8 do not predict and
in some cases do not allow the expression of chaotic dyn
ics at either macrocolumnar or whole-brain scales. Furt
the considerable body of experimental work in this area
provided largely equivocal results, with the continued refin
ment of nonlinear time series analysis techniques leav
many questions unresolved.9

Here we provide theoretical evidence for chaotic dyna
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ics underlying the human EEG, based on the simplest the
of neocortical EEG that is consistent with known anatom
and physiology. We find support for the chaotic gamma ba
activity required by Freeman’s theory of perceptual dyna
ics and show evidence for extensive chaos under widesp
parametric variation.

THEORY

It is well established that the electroencephalogr
~EEG! is directly proportional to the local field potential re
corded by electrodes on the brain’s surface.10 Furthermore,
one single EEG electrode placed on the scalp records
aggregate electrical activity from up to 6 cm2 of brain sur-
face, and hence many millions of neurones.11 With such large
numbers, modeling the system via a discrete enumeratio
these neurones becomes infeasible—instead a continuum
proach is warranted where the neocortex and its dynam
are treated as a continuous sheet of neurones whose ac
varies with time.

Continuum models of neocortex to date fall into tw
broad classes: those which describe the dynamics of a
cortical macrocolumn, consisting of anywhere betwe
40 000 and 100 000 neurones in a small volume of neoco
~referred to as local models!, and those which describe th
activity of the whole neocortical mantle~referred to as globa
models!.4 The model we consider here is a local model d
rived from the more general global theory of Lileyet al.12

The model examined comes from the simplest physiolo
cally and anatomically consistent theory of electrocorti
dynamics, whose parametrization is entirely amenable to
periment independent of this particular theory.

The model considers the behavior of the mean so
membrane potential of two functionally distinct neural pop
lations. A population of excitatory neurones is reciproca
connected to a population of inhibitory neurones, with ex
tatory feedback to the excitatory population and inhibito
feedback to the inhibitory population and with external ex
tatory and inhibitory inputs to each population. All conne
© 2001 American Institute of Physics
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tions between populations and inputs are modeled on
dynamics of fast-acting synapses.12 All parameter values
used are within known physiological bounds. The main st
variable for the excitatory population~the mean soma mem
brane potential of the population! is directly proportional to
the local field potential of the neural aggregate, which p
dominates in the scalp-recorded electroencephalogram.10

The model is formulated as a set of coupled first a
second order nonlinear ordinary differential equatio
~ODEs!, which we solve numerically. The equations whi
comprise the model are

te

dhe

dt
5~her2he!1

heeq2he

uheeq2heru
I ee1

hieq2he

uhieq2heru
I ie ,

~1!

t i

dhi

dt
5~hir 2hi !1

heeq2hi

uheeq2hir u
I ei1

hieq2hi

uhieq2hir u
I i i , ~2!

d2I ee

dt2
12a

dIee

dt
1a2I ee5Aae$NeeSe~he!1pee%, ~3!

d2I ie

dt2
12b

dIie

dt
1b2I ie5Bbe$NieSi~hi !1pie%, ~4!

d2I ei

dt2
12a

dIei

dt
1a2I ei5Aae$NeiSe~he!1pei%, ~5!

d2I i i

dt2
12b

dIii

dt
1b2I i i 5Bbe$Nii Si~hi !1pii %, ~6!

where

Sq~hq!5qmax/„11exp~2&~hq2uq!/sq!…: q5e,i .
~7!

Equations~1! and ~2! describe the temporal evolution ofhe

and hi , the mean soma membrane potentials of the exc
tory and inhibitory populations, respectively. Equations~3!–
~6! describe the temporal evolution of the ‘‘synaptic’’ acti
ity, with the S functions converting the mean som
membrane potential of the respective population into
equivalent mean firing rate, which then acts as a drive to
second order ‘‘synapse’’ described by the left-hand-sides
these equations. These equations represent a spatially h
geneous form of a more complete model of spatio-temp
electrocortical dynamics.12

ParametersA and B are the excitatory and inhibitory
population postsynaptic potential peak amplitudes, witha
andb the respective synaptic rate constants, with the mu
plier e being the base of natural logarithms. Populati
membrane time constants are given byte ,t i , with resting
and equilibrium potentials given byher , hir , andheeq and
hieq . Excitatory inputs to the respective populations a
given bypee andpei , with inhibitory inputs given bypie and
pii . Excitatory neurones each receive a total ofNee andNie

synapses from nearby excitatory and inhibitory neurones
spectively, with inhibitory neurones receiving a totalNei and
Nii synapses. The excitatory and inhibitory population firi
thresholds and standard deviations for these thresholds
given by ue , u i and se and si , with mean maximal firing
rates for each population given byemax and i max.
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For numerical solution the system of mixed order OD
is rewritten as a set of ten nonlinear first order ODEs.

METHODS

Numerical solutions of the ordinary differential
equations

We solve the system of differential equations usi
CVODE,13 a software library written in C. We used the bac
ward differentiation formula~BDF! method implemented by
CVODE, with a user-supplied analytic Jacobian matrix, a
CVODE’s dense linear solver option. Scalar absolute and re
tive tolerances of 1029 were used, and the system was int
grated for 105 milliseconds~100 seconds!. Numerical experi-
ments showed that this period of time was sufficiently lo
for the system to converge to a stable estimate of the lar
Lyapunov exponent~LLE!. Random initial conditions, and
where applicable, random values ofpee andpei for the sys-
tem were generated using the random number generatio
brary SPRNG.14

All numerical solutions were performed on the Swi
burne Supercluster, a dedicated network of 64 Compaq
pha workstations, of the Swinburne Center for Astrophys
and Supercomputing.

Determination of Lyapunov exponents

In order to determine the LLE we implemented the co
tinuous Gram–Schmidt orthonormalization algorithm
Christiansen and Rugh.15 This utilizes the Jacobian matrix o
the system under investigation to construct an augmented
of ODEs, which when numerically solved, gives the LLE
the system. In our case, the system of ten equations is
mented with an additional eleven first order ODEs. The c
tinuous orthonormalization assists in maintaining numeri
accuracy in exponent determination. The algorithm also
lows us to derive systems of ODEs to calculate as many
the Lyapunov exponents of the system as we need.

Attractor reconstruction

The attractors shown were time-delay embedded us
thehe time series with an embedding delay of 4 millisecon
which happened to coincide with the approximate location
the first zero of the autocorrelation function for each tim
series. The time series used to generate the delay-t
embedded attractors were created usingXPPAUT.16 Autocor-
relations and delay-time embeddings were calculated u
software from theTISEAN17 package.

All attractors are from time series 100 seconds lon
following the removal of an initial transient of length 5 se
onds. Autonomous attractors were calculated using
CVODE option ofXPPAUT, with an output temporal resolution
of 1 point per millisecond. For the noise-driven attractor
fourth order Runge–Kutta integrator with a fixed timestep
0.1 milliseconds was used. Every tenth point is display
yielding the same temporal resolution as the autonomous
tractors. Two independent, normally distributed no
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sources with the same standard deviations were u
to add noise to the system via thepee andpei terms of Eqs.
~3! and ~5!.

Attractor dimensions

A method for the approximate determination of the
mension of chaotic attractors from systems of ordinary d
ferential equations is via the Kaplan–Yorke formula,18,19

which relates the Lyapunov exponents of the system to
dimensionality of the chaotic attractor of the system. T
Kaplan–Yorke dimensionDKY ~which has been shown to b
an upper bound to the correlation dimension20!, is defined as

DKY5 j 2
l11l21¯1l j

l j 11
, ~8!

wherel1.l2.¯.lN are the Lyapunov exponents for th
system andj is the largest integer for whichl11l21¯

1l j>0.
In our case, all chaotic attractors investigated in de

have been found to havel1.0, l250 and ul1u,ul3u so
DKY simplifies to

DKY522
l1

l3
. ~9!

In order to calculate the top three Lyapunov exponents
our system we solved a derived system of 43 coupled, n
linear, first order ODEs~see the subsection titled Determin
tion of Lyapunov exponents!, using the method discusse
above~see the subsection titled Numerical solutions of
ordinary differential equations!.

Fat fractal analysis

In order to determine the fat fractal nature of the set
points in parameter space which support chaotic dynam
we selected all points in Fig. 1 whose LLE>0.1 s21 basee,
yielding a set of 578 227 points. We then covered this
with squares of variable side length~«! and calculated the
number of squares@N(«)# occupied as a function of«. The
area of the covering set ism(«)5N(«)«2. Umberger and
Farmer21 assume a scaling relation for small« of the form
m(«)5m01K«g, with K a constant,m0 the limiting mea-
sure of the set, andg the fat fractal exponent. We calculate
m0 , K, andg by performing a Levenberg–Marquardt no
linear fit of our model to our data set over the scaling reg
0.02,«,1.0.

RESULTS

As part of our investigations into the possible types
dynamics the model gives rise to under parametric varia
we discovered solutions which showed the typical hallma
of chaotic behavior, namely complicated, aperiodic time
ries and broad band spectra. The confirmation of the e
tence of a positive largest Lyapunov exponent provide
clear quantitative hallmark of chaos for the system un
investigation. In addition we examined the extent of cha
under parametric variation and the spatial structure of
region of chaotic behavior in parameter space.
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Figures 1 and 2 present the results of a detailed inve
gation into the stability of chaos in a particular parameter
with respect to perturbations in the external excitatory inp
to the excitatory (pee) and inhibitory (pei) neural popula-
tions of the model, while keeping the remaining paramet
fixed. We investigated variations inpee and pei since, con-
sistent with physiology, these are the most rapidly a
widely fluctuating parameters in the model. Other parame

FIG. 1. ~Color online! The dependence of the largest Lyapunov exponen
the system onpee and pei . The parameter space plane depicts the th
different dynamical scenarios present in the model, with point attractor, l
cycle, and chaotic dynamics evident. The LLE was determined at each
201, 310 random locations in this plane~the region containing positive
LLEs was more densely sampled than the point attractor and limit cy
regions!. LLEs at each point in the figure were obtained by linear interp
lation based on a triangulation of the sampled data and mapped accord
the key shown. Parameters:A50.81 mV, B54.85 mV, a5490 s21, b
5592 s21, te59 ms, t i539 ms, emax5imax5500 s21, se5si55 mV, ue

5u i5250 mV, Nee5Nei53034, Nie5Nii 5536, her5hir 5270 mV,
heeq545 mV, hieq5290 mV, pie50, pii 50.

FIG. 2. ~Color online! An enlarged view of part of the region supportin
chaotic dynamics from Fig. 1. The LLE at each of 841,737 random locati
within this square were calculated to produce this plot. Parameters, m
ping, and plot creation methods are identical to Fig. 1.
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will also vary in time, but such variations are generally se
eral orders of magnitude slower than variations inpee and
pei . The effect of variations in these other parameters w
form the focus for future work.

Figure 1 shows, for our particular chaotic parameter
the effects of varyingpee and pei over the range 0 to 15
afferent pulses per neurone per millisecond.22 Three distinct
dynamical regimes are supported by this parameter sp
point attractor dynamics, with a negative LLE; limit cyc
dynamics, with a zero LLE; and chaotic dynamics, with
positive LLE.

Figure 2 complements Fig. 1 by showing a more dens
sampled view of a region of the chaotic parameter set of F
1. The loops, folds and whirls present in Fig. 1 are a
present at increasingly smaller and smaller spatial scale
Fig. 2. This characteristic of repeating spatial structure
smaller and smaller scales indicates that the set of cha
parameter values for this plane may show some fractal c
acteristics. Simple fractals like the Cantor set and the S
pinski gasket, in the limit of smaller and smaller spat
scales, form sets of points of zero measure, where, w
existing, they occupy only infinitesimally small areas or vo
umes, effectively having no area or volume~zero measure! in
the limiting case.23 In the chaotic parameter sets we studie
such limiting behavior is not observed, indicating that w
have chaotic parameter sets with positive~finite! measure in
parameter space.

Objects which show structure at all scales and wh
have positive measure are called fat fractals.23 The applica-
tion of the Umberger–Farmer21 box-counting method of fa
fractal analysis to our chaotic parameter set showed con
gence over a two decade scaling region. The set show
Fig. 1 has a fat fractal exponent of approximately 0.5, s
gesting an object of some fat fractal structure in a set
evident positive measure.

The dynamics corresponding to the chaotic points in t
plane are consistent with that of gamma band EEG, w
peak spectral power overwhelmingly within the 30–100
frequency band.24 There are also significant areal variatio
in the LLE within this plane. Figures 3~a! and 3~b! show
embeddings of attractors from two different locations in t
plane. The attractor in Fig. 3~a! has a LLE of 5.51~N525,
SD 0.08! s21 basee, compared to the attractor in Fig. 3~b!
which has a LLE of 42.9~N525, SD 0.4! s21 basee. The
attractors have different detail, but share an overall fami
similarity in their broadly tricuspid nature and in their flo
profiles.

The attractor of Fig. 3~a! has a Kaplan–Yorke~or
Lyapunov! dimension of 2.0163~N525, SD 0.0002!, and the
attractor of Fig. 3~b! has a Kaplan–Yorke dimension o
2.0933~N525, SD 0.0007!. While the LLE values of attrac-
tors may differ greatly, their overall skeletal structure a
dimensionality remain broadly similar. The effects of noi
in pee and pei will cause any fine structure of individua
attractors to smear out, but, as the examples shown in F
3~c! and 3~d! indicate, the familial structure of the attracto
is preserved.
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DISCUSSION

Based on his extensive studies of the mammalian olf
tory system, Freeman suggested that chaos plays a ce
role in the ability of sensory systems to respond in a ra
and unique fashion to different perceptual stimuli.1,2,25

On the basis of his careful experimental and theoret
studies, Freeman concludes that the olfactory system
bursts of chaotic gamma band activity to signify the perc
tion of the odor to the animal. He considers the details of
chaotic behavior of this signal to be both stimulus- a
context-dependent, with the chaotic attractor for this signa
representation of the particular odor, and emphasizes
these attractors, together with their basins of attraction,
not invariant representations. The learning of a novel o
leads to the creation of a new representative attractor
gether with a new basin of attraction, as well as the simu
neous modification of the preexisting attractors and their
spective basins of attraction.

A common experience for many of us involves the re
ognition and acknowledgment of a particular odor, even ‘‘b
fore we have had time to think.’’ This notion of preattentiv
perception, i.e., the perception of a stimulus before we h
even formally focused our attention to it, implies that t
brain must use a flexible and rapid system for the percep
of stimuli. In other words, it becomes important for the bra
to be able to easily, reliably, and quickly, switch betwe
different dynamical attractors. Freeman believes transiti
between different dynamical scenarios can be considere
either bifurcations, or phase transitions, in a noisy envir

FIG. 3. ~Color online! Delay-embeddedhe time series attractors, varying
pee and pei . All other parameters are identical to Fig. 1.~a! Autonomous
attractor withpee512.9, pei511.9. Averaged over 25 simulations, the to
three Lyapunov exponents~s21 basee! for this particular attractor arel1

55.50 ~SD 0.08!, l2520.01 ~SD 0.01! andl352337.18~SD 0.08!, with
a Kaplan–Yorke dimension of 2.0163~SD 0.0002!. ~b! Autonomous attrac-
tor for pee510 and pei54. Averaged over 25 simulations, the top thre
Lyapunov exponents for this particular attractor arel1542.9 ~SD 0.4!, l2

520.01 ~SD 0.02!, and l352459.9 ~SD 0.4!, with a Kaplan–Yorke di-
mension of 2.0933~SD 0.0007!. ~c! Noise driven attractor, with meanpee

andpei as in~a! and normally distributed white noise, with standard dev
tion 0.316 added to each population input~see the subsection entitled At
tractor reconstruction!. ~d! Noise driven attractor, with meanpee andpei as
in ~b! and noise standard deviation as in~c!.



, o
en
t o
re

ha
r
th

ro
pr
tic
ic

wi
o

a

or
in
in
ve
ur

f
i-

ro
di
g
m
am
m

t
a
an
n

vit
of
e
ta
d
is
e
i

oen-
an’s

ate
nd
per,
As-
the

en

. J.

ha-

r

-

478 Chaos, Vol. 11, No. 3, 2001 Dafilis, Liley, and Cadusch
ment. Brains rapidly select either a preexisting attractor
commence the creation of a new attractor and basin, dep
ing on the form of the presented stimulus. The concep
random transitions between states does not fit in with F
man’s experimental findings or theoretical predictions.2 Hav-
ing a basal state for the brain which is predominantly c
otic, which allows for the rapid transition between attracto
or the creation of new attractors, by small changes in
brain’s input, is therefore a natural conclusion.

Freeman therefore considers that chaos is the most p
able mechanism that underpins the major perceptual
cesses, consistent with his experimental and theore
analyses of palaeocortical and neocortical neurodynam
We consider that the work presented herein is consistent
Freeman’s theoretical developments, and suggest that
work is now amenable to the construction of a similar an
ogy.

Instead of considering the selection of chaotic attract
as the selection of attractors from individual loci from with
the plane of Fig. 1, the selection may occur by choos
individual regional attractors from the plane. Because, o
any small region of the plane, the essential familial struct
of an attractor remains the same~possibly due to the finite
measure of chaos within the space!, the noise, instead o
complicating matters by removing our ability to select ind
vidual attractors from within the plane, helps to create p
totypical attractors for a region, which under synaptic mo
fication and other forms of neuromodulation, may chan
akin to Freeman’s suggestion. Thus Freeman’s attractors
be the archetypal noisy attractors of small regions of par
eter space, each selectable by modification by the syste
some combination of parameters.

The human neocortex can be considered to consis
many thousands of macrocolumns. If each neocortical m
rocolumn operates in a noisy, chaotic mode, coupled to m
other macrocolumns via short and long range connectio
then with one scalp electrode recording the electrical acti
of up to 6 cm2 of brain tissue and given the rapid variation
the LLEs with changing parameter values, it is reasonabl
conclude that an attempt to use scalp recorded EEG da
look for chaotic dynamics in the brain is unlikely to succee
The electroencephalogram is now neither completely no
nor completely chaotic, but it does definitely have an und
lying chaotic basis. This chaotic base state, combined w
r
d-
f

e-

-
s
e

b-
o-
al
s.
th
ur

l-

s

g
r
e

-
-
e
ay
-
of

of
c-
y
s,
y

to
to
.
y,
r-
th

the omnipresent noise in the brain, means that the electr
cephalogram has structure consistent with that of Freem
notion of stochastic chaos.24
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