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Robust chaos in a model of the electroencephalogram: Implications
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Various techniques designed to extract nonlinear characteristics from experimental time series have
provided no clear evidence as to whether the electroencephaldgE&®) is chaotic. Compounding

the lack of firm experimental evidence is the paucity of physiologically plausible theories of EEG
that are capable of supporting nonlinear and chaotic dynamics. Here we provide evidence for the
existence of chaotic dynamics in a neurophysiologically plausible continuum theory of
electrocortical activity and show that the set of parameter values supporting chaos within parameter
space has positive measure and exhibits fat fractal scalinggO@L American Institute of Physics.
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Since the introduction of techniques to extract nonlinear ics underlying the human EEG, based on the simplest theory
characteristics from experimental time series an open of neocortical EEG that is consistent with known anatomy
guestion in brain dynamics has been whether the brain and physiology. We find support for the chaotic gamma band
does indeed show signs of nonlinear or even chaotic ac- activity required by Freeman’s theory of perceptual dynam-
tivity. The electroencephalogram (EEG) is a signal re- ics and show evidence for extensive chaos under widespread
corded by scalp electrodes reflecting the synchronous ac- parametric variation.

tivity of many millions of neurones. Experimental

analyses of the EEG to date have failed to show clear

evidence of chaotic activity. Here we consider the ques- THEORY

tion from a theoretical viewpoint, presenting evidence It is well established that the electroencephalogram
confirming the existence of chaotic dynamics in a biologi- (EEG) is directly proportional to the local field potential re-
cally realistic model of brain electrical activity, also sug-  ¢orded by electrodes on the brain’s surfAt&urthermore,
gesting, however, that a direct observation of chaotic ac- gpe single EEG electrode placed on the scalp records the
tivity in the electroencephalogram is unlikely. We discuss aggregate electrical activity from up to 6 rof brain sur-
the implications of this work for Freeman’s theory of per-  face, and hence many millions of neurofkWith such large
ceptual neurodynamics. numbers, modeling the system via a discrete enumeration of
these neurones becomes infeasible—instead a continuum ap-
proach is warranted where the neocortex and its dynamics
INTRODUCTION are treated as a continuous sheet of neurones whose activity
One of the few coherent attempts to clearly relate thevaries with time.
EEG to macroscopic cortical dynamics is Freeman’s work on ~ Continuum models of neocortex to date fall into two
olfactory perception and palaeocortical EEG which suggestbroad classes: those which describe the dynamics of a neo-
that the existence of chaos in cortical neurodynamics is theortical macrocolumn, consisting of anywhere between
very property that makes perception possible, giving braingl0 000 and 100 000 neurones in a small volume of neocortex
their ability to respond flexibly and coherently to perceptual(referred to as local modelsand those which describe the
stimuli.l? The neocortical electroencephalogram is far moreactivity of the whole neocortical mantleeferred to as global
complicated than its palaeocortical counterpaNotwith-  modeld.* The model we consider here is a local model de-
standing this a considerable amount of experimental and theived from the more general global theory of Liley al?
oretical work has been performed in an attempt to understanihe model examined comes from the simplest physiologi-
neocortical neural dynamics and to determine whether theally and anatomically consistent theory of electrocortical
human neocortical EEG shows signs of chaos. Other wellynamics, whose parametrization is entirely amenable to ex-
regarded macroscopic theories of EE&do not predict and  periment independent of this particular theory.
in some cases do not allow the expression of chaotic dynam- The model considers the behavior of the mean soma
ics at either macrocolumnar or whole-brain scales. Furthemembrane potential of two functionally distinct neural popu-
the considerable body of experimental work in this area hatations. A population of excitatory neurones is reciprocally
provided largely equivocal results, with the continued refine-connected to a population of inhibitory neurones, with exci-
ment of nonlinear time series analysis techniques leavingatory feedback to the excitatory population and inhibitory
many questions unresolvéd. feedback to the inhibitory population and with external exci-
Here we provide theoretical evidence for chaotic dynam+atory and inhibitory inputs to each population. All connec-
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tions between populations and inputs are modeled on the For numerical solution the system of mixed order ODEs
dynamics of fast-acting synaps&sAll parameter values is rewritten as a set of ten nonlinear first order ODEs.
used are within known physiological bounds. The main state
variable for the excitatory populatioithe mean soma mem-
brane potential of the populatipis directly proportional to METHODS
the local field potential of the neural aggregate, which premerical solutions of the ordinary differential
dominates in the scalp-recorded electroencephalodtam. equations

The model is formulated as a set of coupled first and ) ) ) )
second order nonlinear ordinary differential equations We solve the system of differential equations using

(ODES, which we solve numerically. The equations which cvoDE,* a software library written in C. We used the back-
comprise the model are ward differentiation formuldBDF) method implemented by

CVODE, with a user-supplied analytic Jacobian matrix, and
dhe Neeq—he Rieqg—he cvODE's dense linear solver option. Scalar absolute and rela-
Teﬁz(hef_hEH Iheeq—her ©¢ [Nieq—herd ' tive tolerances of 10° were used, and the system was inte-
(1) grated for 18 milliseconds(100 seconds Numerical experi-
ments showed that this period of time was sufficiently long

T dhi _ (hi, —hy)+ Neeq N i+ Rieq— M .. (2) forthe system to converge to a stable estimate of the largest
dt |Neeq i |Nieq— hir| Lyapunov exponentLLE). Random initial conditions, and,
42l e o where applicable, randqm values @f, and pg; for the sys-
T +2a ot +a2|ee:Aae{NeeSe(he)+pee}a 3 tem were gelgerated using the random number generation li-

brary SPRNG
a2, dle All numerical squtions_ were performed on the Swin-
W+2bﬁ+b lie=Bbe[N;cSi(h;) + pie}, (4) burne Supergluster, a dedlcgted network of 64 Compaq _AI—
pha workstations, of the Swinburne Center for Astrophysics
d?l g dlei and Supercomputing.
dt2 +2a W"'a lei=Aae{NgiSe(he) + Peit, 5
d?l;; dlj; ) Determination of Lyapunov exponents
dt? b dt b7 =BbelN; Si(hi) + i}, © In order to determine the LLE we implemented the con-
Where tinuous Gram-Schmidt orthonormalization algorithm of

Christiansen and Rugf.This utilizes the Jacobian matrix of

Sq(Ng) = Umax/ (1 +exp(—v2(hg— 64)/sg)): q=e,i. the system under investigation to construct an augmented set

(7)  of ODEs, which when numerically solved, gives the LLE of

Equations(l) and (2) describe the temporal evolution b.E the system. In our case, the system of ten equations is aug-
andh,, the mean soma membrane potentials of the excita mented with an additional eleven first order ODEs. The con-
tinuous orthonormalization assists in maintaining numerical
accuracy in exponent determination. The algorithm also al-
lows us to derive systems of ODESs to calculate as many of
Ahe Lyapunov exponents of the system as we need.

tory and inhibitory populations, respectively. Equatid8s-
(6) describe the temporal evolution of the “synaptic” activ-
ity, with the S functions converting the mean soma
membrane potential of the respective population into a
equivalent mean firing rate, which then acts as a drive to the
second order “synapse” described by the left-hand-sides of
these equations. These equations represent a spatially homﬂéttractor reconsruction
geneous form of a more complete model of spatio-temporal The attractors shown were time-delay embedded using
electrocortical dynamic¥’ the h, time series with an embedding delay of 4 milliseconds
ParametersA and B are the excitatory and inhibitory which happened to coincide with the approximate location of
population postsynaptic potential peak amplitudes, véith the first zero of the autocorrelation function for each time
andb the respective synaptic rate constants, with the multiseries. The time series used to generate the delay-time-
plier e being the base of natural logarithms. Populationembedded attractors were created usirgauT.’® Autocor-
membrane time constants are given fy 7, with resting relations and delay-time embeddings were calculated using
and equilibrium potentials given bly,,, h;,, andhgeqand  software from therisean'’ package.
hieq- Excitatory inputs to the respective populations are  All attractors are from time series 100 seconds long,
given byp.e andpe;, with inhibitory inputs given by, and  following the removal of an initial transient of length 5 sec-
pi; - Excitatory neurones each receive a totaNQf andN,. ~ onds. Autonomous attractors were calculated using the
synapses from nearby excitatory and inhibitory neurones, resvODE option of XPPAUT, with an output temporal resolution
spectively, with inhibitory neurones receiving a toy); and  of 1 point per millisecond. For the noise-driven attractor a
N;; synapses. The excitatory and inhibitory population firingfourth order Runge—Kutta integrator with a fixed timestep of
thresholds and standard deviations for these thresholds a@el milliseconds was used. Every tenth point is displayed,
given by 6., 6; ands, ands;, with mean maximal firing vyielding the same temporal resolution as the autonomous at-
rates for each population given &y, andi pax- tractors. Two independent, normally distributed noise
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sources with the same standard deviations were usec? - ->40
to add noise to the system via tpg, and p.; terms of Eqgs.
(3) and (5).

Attractor dimensions

A method for the approximate determination of the di-
mension of chaotic attractors from systems of ordinary dif-
ferential equations is via the Kaplan—Yorke formtftd?
which relates the Lyapunov exponents of the system to the
dimensionality of the chaotic attractor of the system. The
Kaplan-Yorke dimensio®y (which has been shown to be
an upper bound to the correlation dimengfbnis defined as

VRS PERESY

ai L <-40

Dry=]— ) (8)

Nji1

where\;>\,>--->\ are the Lyapunov exponents for the 0

system andj is the largest integer for whiclh,;+X\,+---
+ )\j =0. FIG. 1. (Color online The dependence of the largest Lyapunov exponent of
. : . . .fhe system omp.. and pej. The parameter space plane depicts the three
In our case, all chaotic attractors mveStlgated In deta“tiiﬁerent dynamical scenarios present in the model, with point attractor, limit
have been found to have,;>0, A,=0 and|\;|<|\3| SO  ¢ycle, and chaotic dynamics evident. The LLE was determined at each of 1,

Pag 15

Dy simplifies to 201, 310 random locations in this plarithe region containing positive
LLEs was more densely sampled than the point attractor and limit cycle
N regionsg. LLEs at each point in the figure were obtained by linear interpo-
Dky=2— )\_3 ©) lation based on a triangulation of the sampled data and mapped according to

the key shown. Parameter&=0.81mV, B=4.85mV, a=490s?, b
In order to calculate the top three Lyapunov exponents for-592s?, 7e=9ms, 7,=39mS, €na=ina=5005", s=5=5mV, 6,
our system we solved a derived system of 43 coupled, no ?Hif;;‘o T/Vh N_ee:g(‘)ei:\fog“'_(')\‘ie:'j”02536' her=hir=—70mV,
linear, first order ODEgsee the subsection titled Determina- =@ > ™M Mea™ ~S2 MY, Pie=0, Pi =1
tion of Lyapunov exponens using the method discussed
above(see the subsection titled Numerical solutions of the  Figures 1 and 2 present the results of a detailed investi-

ordinary differential equations gation into the stability of chaos in a particular parameter set
with respect to perturbations in the external excitatory inputs
Fat fractal analysis to the excitatory pee and inhibitory (.;) neural popula-

. tions of the model, while keeping the remaining parameters
In order to determine the fat fractal nature of the set of ping gp

points in parameter space which support chaotic dynamicg;,iXEd' We investigated variations P, and pe; since, con-
S TR istent with physiology, these are the most rapidly and
we selected all points in Fig. 1 whose LEM.1s ! basee, phy 9y pIcy

e . ; widely fluctuating parameters in the model. Other parameters
yielding a set of 578227 points. We then covered this set y gp P

with squares of variable side length) and calculated the
number of squareN(e)] occupied as a function af. The 10.75
area of the covering set ig(¢)=N(&)e?. Umberger and
Farmef! assume a scaling relation for smallof the form
u(e)=puot+Ke?, with K a constantu, the limiting mea-

sure of the set, ang the fat fractal exponent. We calculated

Mo, K, andy by performing a Levenberg—Marquardt non-
linear fit of our model to our data set over the scaling region
0.02<e<1.0. p

el

RESULTS

As part of our investigations into the possible types of
dynamics the model gives rise to under parametric variation
we discovered solutions which showed the typical hallmarks
of chaotic behavior, namely complicated, aperiodic time se-
ries and broad band spectra. The confirmation of the exis- 754
tence of a positive largest Lyapunov exponent provided a 9 P 12.25
clear quantitative hallmark of chaos for the system under . 2. (Col e An enlarded view of - _ ]
investigation. In. addlt.lor.] we examined the extent of Chao{haclntic. éyr?aor:ligg fI?oem Igig?Qéfl'ghz L\I/_IEVZ\toeaFé?lnofo 84:1?7:;679:22d§:r[1)$§£zgns
under parametric variation and the spatial structure of thgiitin this square were calculated to produce this plot. Parameters, map-

region of chaotic behavior in parameter space. ping, and plot creation methods are identical to Fig. 1.
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will also vary in time, but such variations are generally sev-

eral orders of magnitude slower than variationspiry and o __
Pei- The effect of variations in these other parameters will NN \
form the focus for future work. R\

Figure 1 shows, for our particular chaotic parameter set,
the effects of varyingp.. and p.; over the range 0 to 15
afferent pulses per neurone per millisecéAdhree distinct
dynamical regimes are supported by this parameter space
point attractor dynamics, with a negative LLE; limit cycle
dynamics, with a zero LLE; and chaotic dynamics, with a
positive LLE.

Figure 2 complements Fig. 1 by showing a more densely
sampled view of a region of the chaotic parameter set of Fig.
1. The loops, folds and whirls present in Fig. 1 are also
present at increasingly smaller and smaller spatial scales in
Fig. 2. This characteristic O.f rc_epeatlng spatial structure aIEIG. 3. (Color onling Delay-embeddedh, time series attractors, varying
smaller and smaller scales indicates that the set of chaotis,_ andp,,. Al other parameters are identical to Fig. (8 Autonomous
parameter values for this plane may show some fractal chapttractor withpe=12.9, pe;=11.9. Averaged over 25 simulations, the top

acteristics. Simple fractals like the Cantor set and the Sier"ée Lyapunov exponents " basee) for this particular attractor arg;
=5.50(SD 0.08, A,= —0.01(SD 0.01 and\ ;= — 337.18(SD 0.08, with

pinski gasket, in the ”mit of smaller and smaller Spatia'laKaplan—Yorke dimension of 2.0163D 0.0002. (b) Autonomous attrac-
scales, form sets of points of zero measure, where, whiler for p,.=10 andp.;=4. Averaged over 25 simulations, the top three
existing, they occupy only infinitesimally small areas or vol- Lyapunov exponents for this particular attractor afe=42.9 (SD 0.4, X,

. : ; =—0.01(SD 0.02, and\;=—459.9(SD 0.4, with a Kaplan—Yorke di-
ume,s’ ?ﬂectlvegshaVIHQ no ar?a or VOlumro measuben . mension of 2.0933SD 0.0007. (c) Noise driven attractor, with megy,
the limiting case” In the chaotic parameter sets we studied,angp,; as in(a) and normally distributed white noise, with standard devia-
such limiting behavior is not observed, indicating that wetion 0.316 added to each population inffsee the subsection entitled At-
have chaotic parameter sets with positifiaite) measure in tractor reconstruction (d) Noise driven attractor, with megm,, andp,; as
parameter space in (b) and noise standard deviation as(@).

Objects which show structure at all scales and which
have positive measure are called fat fracfal$he applica-
tion of the Umberger—Farm@rbox-counting method of fat
fractal analysis to our chaotic parameter set showed conver- Based on his extensive studies of the mammalian olfac-
gence over a two decade scaling region. The set shown iory system, Freeman suggested that chaos plays a central
Fig. 1 has a fat fractal exponent of approximately 0.5, sugfole in the ability of sensory systems to respond in a rapid
gesting an object of some fat fractal structure in a set ofind unique fashion to different perceptual stimhfie®
evident positive measure. On the basis of his careful experimental and theoretical

The dynamics corresponding to the chaotic points in thisstudies, Freeman concludes that the olfactory system uses
plane are consistent with that of gamma band EEG, witHursts of chaotic gamma band activity to signify the percep-
peak spectral power overwhelmingly within the 30—100 Hztion of the odor to the animal. He considers the details of the
frequency band* There are also significant areal variations chaotic behavior of this signal to be both stimulus- and
in the LLE within this plane. Figures(8 and 3b) show context-dependent, with the chaotic attractor for this signal a

embeddings of attractors from two different locations in theePresentation of the particular odor, and emphasizes that
plane. The attractor in Fig.(8 has a LLE of 5.51(N=25 these attractors, together with their basins of attraction, are

SD 0.08 s ! basee, compared to the attractor in Fig(t3 Inot dlnvtan;]nt repret§ enta]:uons. The Iearnln? tqf a r:?vel[ odto '
which has a LLE of 42.9N=25 SD 0.4 s * basee. The |62ds fo the creation of a new representative attractor to-

. . . Igether with a new basin of attraction, as well as the simulta-
attractors have different detail, but share an overall familial e - .
L : . . : . neous modification of the preexisting attractors and their re-
similarity in their broadly tricuspid nature and in their flow

' spective basins of attraction.
profiles.

) A common experience for many of us involves the rec-
The attractor of Fig. @ has a Kaplan—York&(or  ,qhition and acknowledgment of a particular odor, even “be-
Lyapunoy dimension of 2.0168N =25, SD 0.0002 and the  ¢4re \ye have had time to think.” This notion of preattentive
attractor of Fig. 8) has a Kaplan—Yorke dimension of erception, i.e., the perception of a stimulus before we have
2.0933(N=25, SD 0.000y. While the LLE values of attrac- eyen formally focused our attention to it, implies that the
tors may differ greatly, their overall skeletal structure andprain must use a flexible and rapid system for the perception
dimensionality remain broadly similar. The effects of noiseof stimuli. In other words, it becomes important for the brain
in pee and pe; will cause any fine structure of individual to be able to easily, reliably, and quickly, switch between
attractors to smear out, but, as the examples shown in Figglifferent dynamical attractors. Freeman believes transitions
3(c) and 3d) indicate, the familial structure of the attractors between different dynamical scenarios can be considered as
is preserved. either bifurcations, or phase transitions, in a noisy environ-

™

c d

DISCUSSION
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ment. Brains rapidly select either a preexisting attractor, othe omnipresent noise in the brain, means that the electroen-
commence the creation of a new attractor and basin, dependephalogram has structure consistent with that of Freeman'’s
ing on the form of the presented stimulus. The concept ofiotion of stochastic chad.

random transitions between states does not fit in with Free-
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